
ANL-85-19 ANL.85-19

COMPARISON OF THE CRAY X-MP.4,

FUJITSU VP-200, AND HITACHI S-810/20
AN ARGONNE PERSPECTIVE

by

Jack J. Dongarra and Alan Hinds

•-v

'^y Of

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO

for the U. S. DEPARTMENT OF ENERGY

under Contract W-31-109-Eng-38

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, com­
pleteness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific com­
mercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency
thereof.

Printed in the United States of America
Available from

National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: AOl

ANL-85-19

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Comparison of the CRAY X-MP-4,

Fujitsu VP.200, and Hitachi S-810/20:

An Argonne Perspective

Jack J. Dongarra
Mathematics and Computer Science Division

and

Alan Hinds
Computing Services

Distribution Category:
Mathematics and Computers
General (UC-32)

October 1985

Table or Contents

List of Tables v

List of Figures v

Abstract 1

1. Introduction 1

2. Architectures 1

2.1 CRAY X-MP 2
2.2 Fujitsu VP.200 4

2.3 Hitachi S-81020 6

3. Comparison of Computers 8

3.1 IBM Compatibility of the Fujitsu and Hitaschi Machines 8
3.2 Main Storage Characteristics 8
3.3 Memory Address Architecture 10

3.3.1 Memory Address Word and Address Space 10
3.3.2 Operand Sizes and Operand Memory Boundary Alignment 12
3.3.3 Memory Regions and Program Relocation 13
3.3.4 Main Memory Size Limitations 13

3.4 Memory Performance 14

3.4.1 Memory Bank Structure 14
3.4.2 Instruction Access 14
3.4.3 Scalar Memory Access 14
3.4.4 Vector Memory Access 15

3.5 Input/Output Performance 16
3.6 Vector Processing Performance 18
3.7 Scalar Processing Performance 21

4. Benchmark Environments 22

5. Benchmark Codes and Results 23

5.1 Codes 23

5.1.1 APW 23
5.1.2 BIGMAIN 24
5.1.3 BFAUCET and FFAUCET 24
5.1.4 LINPACK 24
5.1.5 LU, Cholesky Decomposition, and Matrix Multiply 26

5.2 Results 28

6. Fortran Compilers and Tools 28

6.1 Fortran Compilers 28

6.2 Fortran Tools 30

7. Conclusions

References

31

32

Acknowledgments 32

Appendix A: VECTOR Program 33

Appendix B: VECTOR Results 40

IV

List of Tables

1. Overview of Machine Characteristics 9

2. Main Storage Characteristics 11

3. Input/Output Features and Performance 17

4. Vector Architecture 19

5. Scalar Architecture 22

6. Programs Used for Benchmarking 25

7. Average Vector Length for BFAUCET and FFAUCET 26

8. LINPACK Timing for a Matrix of Order 100 26

9. LU Decomposition Based on Matrix Vector Operations 27

10. Cholesky Decomposition Based on Matrix Vector Operations 27

11. Matrix Multiply Based on Matrix Vector Operations 28

12. Timing Dau (in seconds) for Various Computers 29

B-1. Loops Missed by the Respective Compilers 42

List of Figures

1. CRAY X-MP/48 Architecture 3

2. Fujitsu VP-200 Architecture S

3. Hitachi S-810/10 Architecture 7

Comparison of the CRAY X-MP-4,

Fujitsu VP.200, and Hitachi S-810/20:

An Argonne Perspective*

Jack J. Dongarra

Mathematics and Computer Science Division

Alan Hinds

Computing Services

Abstract

A set of programs, gathered from major Argonne computer users, was run on the current generation
of supercomputers: the CRAY X-MP-4. Fujitsu VP-200. and Hitachi S-810/20. The results show
that a single processor of a CRAY X-MP-4 is a consistently strong performer over a wide range of
problems. The Fujitsu and Hitachi excel on highly vectorized programs and offer an attractive
opportunity to sites with IBM-compatible computers.

1. Introduction

Last year we ran a set of programs, gathered from major Argonne computer users, on the current
generation of supercomputers: the CRAY X-MP-4 at CRAY Research in Mendota Heights. Minnesota;
the Fujitsu VP-200 at the Fujitsu plant in Numazu. Japan; and the Hitachi S-810/20 at the Hitachi Ltd.
Kanagawa Works in Kanagawa. Japan.

2. Architectures

The CRAY X-MP, Fujitsu VP, and Hitachi S/810 computers are all high-performance vector pro­
cessors that use pipeline techniques in both scalar and vector operations and provide parallelism among
independent functional units. All three machines use a register-to-register format for instruction execu­
tion and are architecturally similar at a high level. Each machine has three vector load/store techniques
— contiguous element, constant stride, and indirect address (index vector) modes. All three are optim­
ized for 64-bit floating-point arithmetic operations. There are, however, a number of major differences
that should be noted. These are discussed below and summarized in Table 1 at the end of this section.

2.1 CRAY X-MP

The CRAY X-MP-4 is the largest of the family of CRAY X-MP computer models, which range

in size from one to four processors and from one million to sixteen million words of central memory.

The CRAY X-MP/48 computer consists of four identical pipelined processors, each with fully

*Work supported in pan by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under ConUacl W-3l-109-Eng-38.

segmented scalar and vector functional units with a 9.5-nanosecond clock cycle. All four processors

share in common an 8-million word, high-speed (38-nanosecond cycle time) bipolar central memory, a

common I/O subsystem, and an optional integrated solid-state storage device (SSD). Each processor

contains a complete set of registers and functional units, and each processor can access all of the com­

mon memory, all of the I/O devices, and the single (optional) SSD. The four CPUs can process four

separate and independent jobs, or they can be organized to work concurrently on a single job. The

architecture of the CRAY X-MP/48 is depicted in Figure 1.

This document will focus on the performance of only a single processor of the CRAY X-MP-4,

as none of our benchmark programs were organized to take advantage of multiple processors. Thus, in

the tables and text diat follow, all data on the capacity and the performance of the CRAY X-MP-4

apply to a single processor, except for data on the size of memory and the configuration and perfor­

mance of I/O devices and the SSD.

The CRAY X-MP-4 has extremely high floating-point performance for both scalar and vector
applications and both short and long vector lengdis. Each CRAY X-MP-4 processor has a maximum
theoretical floating-point result rate of 210 MFLOPS (millions of floating point operations per second)
for overlapped vector multiply and add instructions. With the optional solid-state storage device
installed, the CRAY X-MP-4 has an input/output bandwidth of over 2.4 billion bytes per second, the
largest in this study; without die SSD, the I/O bandwidth is 424 million bytes per second, of which 68
million bytes per second is attainable by disk I/O. The CRAY permits a maximum of four disk dev­
ices on each of eight disk control units, the smallest disk subsystem in this study.

The cooling system for the CRAY X-MP-4 is refrigerated liquid freon.

The CRAY X-MP-4 operates with the CRAY Operating System (COS), a batch operating system
designed to attach by a high-speed channel or hyperchannel interface with a large variety of self-
contained, general-purpose front-end computers. All computing tasks odier than batch compiling, link­
ing, and executing of application programs must be performed on the front-end computer. Alterna­
tively, the CRAY X-MP-4 can operate under CTSS (CRAY Time-Sharing System, available from
Lawrence Livermore National Laboratory), a full-featured interactive system with background batch
computing. The primary programming languages for the CRAY X-MP are Fortran 77 and CAL
(CRAY Assembly Language); the Pascal and C programming languages are also available.

CVailMHilCVtiMt
(MC«»t X - M ^ / 0

CPU 2

CPU3

CPU 4

• 4 - » l t
r««t Hfli« ctocfe

Ctntrol
mtmory

l-tM

UCOCO

CPU1

V r«9l«t«ra
• r«9l«t«r»
• 4 M-fel*
• l»M«Mt »tff
r««l«t«r

^

T r««ltl»rt
• 4 M - M t
r«flflt«r»

0 r«oltt«ft
• 4 2 4 - k l i
r t | l t1«r«

Intfrvctlon
ft«fr«ri
4 kvTfdrt
(f t i t l « -» l l
lmlr«cll*«
»«rc«U)

lA) tectlon

'

V«ef«f n t tb

Vtcf*r kHfltH
| r - f t i t t)

c i *e l (S2-MM)

i r t f U t t f t
• M - k i i

A r t9 l t t«r i
• 24-blt
rtfttldra

, . ^ ^ ^ / c o i i i f o l \
\ (td ell M c t l e m) /

V«cier fMACtlonal
•ni t t
Add/tyMroef
Shift
LOflc«l (2)
P99mWi9it
(•4-blt •rlthm«tlc)

n»«fliif ^Inf
f«HCtloii«l o i t t
AM/tvMroct
M«l*l»ly
RbClprocot

(M - b H artthm^flc)

Scolar fvMctlonol
•niti
Add/iubtract
LOflcal
Shiff
Ptp«lo11en/LZ
(ft4-blt oflthmttlc)

Addrttt
funetlofiol units
Add/tttbtrocf
Multiply
(24-blt aritliffittlc)

Vtctor
toctlon

ScolQr
ttction

Addrttt
ttetiofi

Initractlon
ttction

Figure 1

CRAY X-MP/48 Architecture

2.2 Fujitsu VP-200 (Amdahl 1200)

The Fujitsu VP-200 is midway in performance in a family of four Fujitsu VP computers, whose

performance levels range to over a billion floating-point operations per second. In North America, the

Fujitsu VP-200 is marketed and maintained by the Amdahl Corporation as the Amdahl 1200 Vector

Processor. Although we benchmarked the VP-200 in Japan, the comparisons in this document will

emphasize the configurations of die VP-200 offered by Amdahl in die United States.

The Fujitsu VP-200 is a high-speed, single-processor computer, with up to 32 million words of

fast (60-nanosecond cycle time) static MOS central memory. The VP-200 has separate scalar (15-

nanosecond clock cycle) and vector (7.5-nanosecond clock cycle) execution units, which can execute

instructions concurrendy. A unique characteristic of die VP-200 vector unit is its large (8192-word)

vector register set, which can be dynamically configured into different numbers and lengths of vector

registers. The VP-200 architecture is depicted in Figure 2.

The VP-200 has a maximum tiieoretical floating point result rate of 533 MFLOPS for overlapped

vector multiply and add instructions.

The VP-200 system is cooled entirely by forced air.

The Fujitsu VP-200 scalar instruction set and data formats are fully compatible with the IBM 370

instruction set and data formats; the VP-200 can execute load modules and share load libraries and

datasets that have been prepared on IBM-compatible computers. The Fujitsu VP-200 uses IBM-

compatible I/O charmels and can attach all IBM-compatible disk and tape devices and share these dev­

ices with odier IBM-compatible mainframe computers. Fujitsu does not offer an integrated solid-state

storage device for the VP computer series, but any such device that attaches to an IBM channel and

emulates an IBM disk device can be attached to the VP-200. The total I/O bandwiddi of die VP-200

is 96 million bytes per second, the smallest in this study. The VP-100 can attach over one thousand

disks; up to 93 million bytes per second can be used for disk I/O.

The Fujitsu VP-200 operates widi die FACOM VP control program (also called VSP — Vector

Processor System Program — by Amdahl), a batch operating system designed to interface with an

IBM-compatible front-end computer via a channel-to-channel (CTC) adaptor in a tightiy coupled or

loosely coupled network. The front-end computer operating system may be Fujitsu's OS-IV (available

only in Japan) or IBM's MVS, MVS/XA, or VM/CMS. To optimize use of die VP vector hardware,

Fujitsu encourages VP users to perform all computing tasks, other than executing their Fortran applica­

tion programs, on the front-end computer.

Motk Ragittert
I KB

Moirt
Storog*

ZX MB

Channel)

Lood/
Store

Lood/
Store

Vector
Regitftrt

64KB

64KB

Buffer
Storoge

Motk 1

Add/Logicol

'

Multiply

Divide

J
-]

1
1

GPR
FLPR

Scolor
Execution
Unit

Vector Unit

Scolor Unit

Figure 2
Fujitsu VP-200 Architecture

Of the three machines in this study, Fujitsu (Amdahl) provides the most powerful set of optimiz­

ing and debugging tools, all of which run on the front-end computer system. The only programming

language diat takes advantage of die Fujitsu VP vector capability is Fujitsu Fortran 77/VP, although

object code produced by any other compiler or assembler available for IBM scalar mainframe comput­

ers will execute correctiy on die VP in scalar mode.

2.3 Hitachi S-810/20

The Hitachi S-810/20 computer is the more powerful of two Hitachi S-810 computers, which

currently are sold only in Japan. Very litde is published in English about the Hitachi S-810 computers;

consequendy, some data in die tables and comparisons are inferred and may be inaccurate.

The Hitachi S-810/20 is a high-speed, single-processor computer, widi up to 32 million words of

fast (70-nanosecond bank cycle time) static MOS central memory and up to 128 million words of

extended storage. The computer has separate scalar (28-nanosecond clock cycle) and vector (14-

nanosecond clock cycle) execution units, which can execute instructions concurrendy. The scalar exe­

cution unit is distinguished by its large (32 thousand words) cache memory. The S-810/20 vector unit

has 8192 words of vector registers, and the largest number of vector functional units and the most

comprehensive vector macro instruction set of the three machines in this study. The Hitachi S-810

family has die unique ability to process vectors that are longer than their vector registers, entirely

under hardware control. The architecture is shown in Figure 3.

The Hitachi S-810/20 has a maximum theoretical floating point result rate of 840 MFLOPS for

overlapped vector multiply and add instructions (four multiply and eight add results per cycle).

The S-810/20 computer is cooled by forced air across a closed, circulating water radiator.

Like the Fujitsu VP, the Hitachi S-810/20 scalar instruction set and data formats are fully compa­

tible widi the IBM 370 instruction set and data formats; the S-810/20 can execute load modules and

share load libraries and datasets that have been prepared on IBM-compatible computers. The Hitachi

S-810/20 uses IBM-compatible I/O channels and can attach all IBM-compatible disk and tape devices

and share diese devices with other IBM-compatible mainframe computers. Hitachi's optional, extended

storage offers extremely high performance I/O. With the extended storage installed, the Hitachi S-

810/20 has an I/O bandwith of 1.1 billion bytes per second; witiiout extended storage die I/O

bandwidth is 96 million bytes per second. Up to 93 million bytes per second can be used for disk I/O.

The Hitachi can attach over one thousand disk devices.

Scolor Procetting Unit

I / O
Processor

L
Buffer
Storage

FPR

GPR

Moin
Storoge

L_

Extended
Storoge

vector
Address
Registers

Vector
Lood

Vector
Lood

Vector
Store

Vector
Lood

Add/Logical

Mult./Div.

Scolor
Registers

Vector
Registers

VMR

Add/Logicol

Q
Add/Logicol d
Mult./Olv. Add d
Mult. Add

Mosk d
_ j

Vector Processing Unit

FPR: Floating Point Registers

GPR- Generol Purpose Registers

VMR- Vector Mask Registers

Figure 3
Hitachi S-810/10 Architecture

The Hitachi S-810/20 operates with either a batch operating system designed to interface with an
IBM-compatible front-end computer via a channel-to-channel (CTC) adaptor in a loosely coupled net­
work, or a stand-alone operating system with MVS-like batch and MVS/TSO-like interactive capabili­
ties. The primary programming languages for the Hitachi S-810 computers are Fortran 77 and assem­
bly language, although object code produced by any assembler or compiler available for IBM-
compatible computers will also execute on the S-810 computers in scalar mode.

8

3. Comparison of Computers

In diis section, we compare die IBM compatibility of the Fujitsu and Hitachi computers and dis­

cuss the similarities and differences between the Fujitsu, Hitachi, and CRAY X-MP-4 computers widi

regard to main storage, memory address architecture, memory, I/O, and vector and scalar processing

performance,

3.1 IBM Compatibility of the Fujitsu and Hitachi Machines

Bodi Japanese computers run the full IBM System 370 scalar instruction set. The Japanese

operating systems simulate IBM MVS system functions at die SVC level. MVS load modules created

on Argonne's IBM 3033 ran correctiy on both die Fujitsu and Hitachi machines in scalar mode.

The Japanese computers can share datasets on direct-access I/O equipment with IBM-compatible

front-end machines. Codes can be developed and debugged on the front end with die user's favorite

tools, then recompiled and executed on the vector processor. All software tools for the vector proces­

sor will run on the front end. Currentiy the software tools are MVS TSO/SPF oriented.

The Japanese Fortran compilers are compatible with IBM VS/Fortran.

3.2 Main Storage Characteristics

The main storage characteristics of the three machines in this study are compared in Table 2. All

three machines have large, interleaved main memories, optimized for 64-bit-word data transfers, with

bandwidths matched to the requirements of their respective vector units. Each machine permits vector

accesses from contiguous, constant-stride separated, and scattered (using indirect list-vectors) memory

addresses. All three machines use similar memory error-detection and error-correction schemes. The

text diat follows concentrates on those differences in main memory that have significant performance

implications.

The CRAY X-MP-48 uses extremely fast bipolar memory, while the Fujitsu and Hitachi comput­

ers use relatively slower static-MOS memory (see Table 2). CRAY'S choice of die faster but much

more expensive bipolar memory is largely dictated by the need to service four processors from a sin­

gle, symmetrically shared main memory. Fujitsu and Hitachi selected static MOS for its relatively

lower cost and lower heat dissipation. These MOS characteristics permit much larger memory

configurations widiout drastic cost and cooling penalties. Fujitsu and Hitachi compensate for die rela­

tively slower speed of dieir MOS memory by providing much higher levels of memory banking and

interleaving.

Table I

Overview of Machine Characteristics

Chsracicn&tK CRAY X-MP-4 Fujiuu Vp-200 Miuchi S 81020

Number of Proccsson

Machine Cycle Time 9.5 ns vector

9.5 nt scelar

7.5 ns vector

15 ns scalar

14 ns vector

28 ni scalar

Memory Addressing Real Mod. Virtual Mod Vinual

Maximum Memor> Size 16 Mwords 32 Mwofda 32 Mwords

Opuooal SSD Memory 32: 128 Mwords Not Available 32; 64; 128 Mwords

SSD Tnnsfcr Rate 256 Mwords/s Not Available 128 Mwords/s

VO-Manory Bandwidth 50 Mwords/i 12 Mwords/s 12 Mwords/s

(numbere below arc

per processor)

CPU Memory Bandwidth 315 Mwords/s 533 Mwords/s 560 Mwords/s

ScaUr BufTer Memory 64 Words T reg 8192 Words Cache 32768 Words Cache

Vector Registers 512 Words 8192 Words 8192 Words

Vector Pipehnes:

Load/Store Pipes 2 Load: 1 Store 2 Load/Store

Floaung Point M A A 1 Mult; 1 Add; 1 Mult; 1 Add

3 Load; 1 Load/Store

2 Add; 2 Mult/Add

Peak Vector (M • A) 210 MFLOPS 533 MFLOPS 840 MFLOPS

Cooling System Type Freon Forced Air Air and Radiator

10

Characteristic CRAY X-MP-4 Fujitsu VP-200 Hitachi S-810/20

Operating Systems CRAY-OS (batch)

CTSS (interactive)

VSP (batch) HAP OS

Front Ends IBM, CDC, DEC,

Data General,

Univac, Apollo,

Honeywell

IBM-compatible IBM-compatible

Vectorizing Languages Fortran 77 Fortran 77 Fortran 77

Other High-Level

Languages Pascal, C, LISP Any IBM-compat. Any IBM-compat.

Vectorizing Tools Fortran Compiler Fortran Compiler Fortran Compiler

FORTUNE VECTIZER

Interact. Vectorizer

3.3 Memory Address Architecture

3.3.1 Memory Address Word and Address Space

The CRAY X-MP uses a 24-bit address, which it interprets as a 16-bit "parcel" address when
referencing instructions and as a 64-bit-word address when referencing operands. This addressing
duality leads to a 4-million-word address space for instructions and a 16-million-word address space
for operands.

The Japanese machines use similar memory addressing schemes, owing to their mutual commit­
ment to IBM compatibility. The two Japanese computers allow operating-system selection of IBM
370-compatible 24-bit addressing or IBM XA-compatible 31-bit addressing. These addressing alterna­
tives provide a 2-million-word address space or a 256-million-word address space, respectively. The
address space is identical for both program instructions and operands.

11

Table 2

Main Storage Characteristics

Memory hem

Memory Type

Addressing:

Paged

Addreu Word

Addrcu Space

Addreu Boundary:

Instructions

Scalar Dau

Vector Dau

Vector Addressing

Modes

Memory Size

Interleave

Cycle Time:

Section

Bank

Acceu Time:

ScaUr

Vector

Umu

SECDED

Type

Biu

Mwords

Bit

Bit

Bit

Mwords

Mbytes

Sections

Ways

CP- ns

CP - ns

C P - n i

CP-ns

CRAY X.MP'4

16K-bil Bipolar

Extended Real

No

24

4(inst): 16(dau)

16

64

64

Contiguous

ConsUnt Stride

Indirect Index

8: 16

64; 128

4; 4

64; 64

ICP - 9 5 ns

4CP . 38 ns

I4CP - 133 ns

I7CP - 162 ns

Fujitfu VP-200

64K-bil S MOS

Mod. Virtual

System Only

24 or 31

2; 256

16

8

32; 64

Contiguous

ConsUnt Stride

Indirect Index

8; 16; 32

64; 128; 256

8; 8; 8

128; 256; 256

2CP- 15 ns

8CP-60ns

From Cache

2CP - 15 n$

7

Ihi^chi s-810/20

64Kb i lSMOS

Mod Vinual

System Only

24 or 31

2; 256

16

8

32; 64

Contiguous

ConsUnt Stride

Indirect Index

4; 8; 16; 32

32; 64; 128; 256

8

128

ICP - 14 ns

5CP - 70 ns

From Cache

2CP . 28 ns

7

12

Memory Item

Transfer Rate:

Scalar VS

Inst. Fetch

Vect. Load

Vect. Store

Vect. ToUl

VO

Vector Bandwidth:

u s Pipes

Sectors

Vector Bandwidth:

Max. Load

Max. Store

ToUl L/S

Scalar Buffer Memory:

Size

Block Load

Access Time

Trans. Rate

Instmction Buffer:

Block Load

Units

Words/CP

Words/CP

Words/CP

Words/CP

Words/CP

Words/CP

Pipes

Sectors

Stride

Mwords/s

Mwords/s

Mwords/s

Words

Words/CP

CP-ns

Words/CP

Words/CP

CRAY X-MP-4

(per CPU)

lW/19. ns

8W/9.5 ns

2W/9.5 ns

lW/9.5 ns

3W/9.5 ns

lW/9.5 ns

(per CPU)

2 Load; 1 Store

one; odd; even

210; 210; 210

105; 105; 105

315; 315; 315

T Registers

64 T

lW/9.5 ns

ICP - 9.5 ns

lW/9.5 ns

128 Words I-slack

8W/9.5 ns

Fujitsu VP-200

2W/15 ns

2W/15 ns

8W/15 ns

8W/15 ns

8W/15 ns

?

2 Load/Store

X 2 Sectors

one; odd; even

533; 266; 133

533; 266; 133

533; 266; 133

Cache Memory

8192

8W/60 ns

2CP - 15 ns

2W/15 ns

Cache Memory

8W/60 ns

HiUchi S-810/2U

2W/14 ns

lW/14 ns

8W/14 ns

2W/14 ns

8W/14 ns

lW/14 ns

3 Load; 1 Load/Store

X 2 Sectors

one; odd; even

560; 560; 560

140; 140; 140

560; 560; 560

Cache Memory

32768

8W/70 ns

2CP - 28 ns

2W/28 ns

Cache Memory

8W/70 ns

3.3.2 Operand Sizes and Operand Memory Boundary Alignment

CRAY X-MP computers have only two hardware operand sizes: 64-bit integer, real, and logical
operands; and 24-bit integer operands, used primarily for addressing. All CRAY operands are stored
in memory on 64-bit word boundaries. CRAY program instructions consist of one or two 16-bit "par­
cels," packed four to a word. CRAY instructions are fetched from memory, 32 parcels at a time
beginning on an 8-word memory boundary, into an instruction buffer that in turn is addressable on 16-
bit parcel boundaries.

13

The Japanese compucers provide all of the IBM 370 architecture's operand types and lengths, and

some additional ones. The Fujitsu and Hitachi scalar insiruclion sets can process 8-bit. 16-bit, 32-bit,

64-bil, and 128-bil binary-arithmetic and logical operands; 8-bil to 128-bit (in units of 8 bits) decimal-

arithmetic operands; and 8-bii to 32768-bit (in units of 8 bits) character operands. Scalar operands

may be aligned in memory on any 8-bii boundary. However, the Fujitsu and Hitachi vector instruction

sets can process only 32bil and 64-bil binary-arithmetic and logical operands, and these operands must

be aligned in memory on 32-bit and 64-bil boundaries, respectively. Most of the Fijitsu and Hitachi

incomptitibilities with IBM Fortran programs arise from vector operand misalignment in COMMON

blocks and EQUIVALENCE statements.

3 J J Memory Regions and Program Relocation

TT)e CRAY X-MP uses only real memory addresses. The operating system loads each program

into a contiguous region of memory for instructions and a contiguous region of memory for operands.

The CRAY X-MP uses two base registers to relocate all addresses in a program; one register uni­

formly biases all instruction addresses, and the second register uniformly biases all operand addresses.

In contrast, the Fujitsu and Hitachi computers use a modified virtual-memory addressing scheme.

The operating systems and user application programs are each loaded into a contiguous region of "vir­

tual" memory, aldiough each may actually occupy noncontiguous "pages" of real memory. Every vir­

tual address reference must undergo dynamic address translation to obtain the corresponding real

memory address. As in conventional virtual-memory systems, operating-system pages can be paged

out to an external device, allowing the virtual-memory space to exceed the underlying real-memory

space. However, user application program pages are never paged out. Application program address

translation is used primarily to avoid memory fragmentation.

3J.4 Main Memory Size Limitations

The CRAY X-MP is available with up to 16 million words of main memory, the maximum per­

mitted by its address space. This is restrictive compared to the Japanese offerings, especially as the

memory must be shared by four processors. Currently, the Fujitsu and Hitachi computers offer a max­

imum of 32 million words of main memory. However, both Japanese computers could accommodate

expansion to 256 million words (per program) within the current 31-bit virtual-addressing architecture.

14

3.4 Memory Performance

3.4.1 Memory Bank Structure

The computers on which we ran the benchmark problems were all equipped widi 8 million words

of main memory. The CRAY X-MP-48 memory is divided into 64 independent memory banks, organ­

ized as 4 sections of 16 banks each. Bodi die Fujitsu and Hitachi computer memories are divided into

128 independent memory banks organized as 8 sections of 16 banks each; Fujitsu memories larger dian

8 million words have 256 memory banks in 8 sections. In general, die larger numbers of memory

banks permit higher bandwidths for consecutive block memory transfers and fewer bank conflicts from

random memory accesses.

3.4.2 Instruction Access

The CRAY X-MP has four 32-word instruction buffers that can deliver a new instruction for exe­

cution on every clock cycle, leaving the full memory bandwidth avadable for operand access. Each

buffer contains 128 consecutive parcels of program instructions, but the separate buffers need not be

from contiguous memory segments. Looping and branching within the buffers are permitted; entire

Fortran DO loops and small subroutines can be completely contained in the buffer. An instruction

buffer is block-loaded from memory, 32 words at a time, at the rate of 8 words per 9.5-nanosecond

cycle.

The Fujitsu and Hitachi processors buffer all instruction fetches dirough their respective cache

memories (see "Scalar Memory Access" below). The cache bandwidths are adequate to deliver

instructions and scalar operands without conflict.

3.4.3 Scalar Memory Access

The CRAY X-MP does not have a scalar cache. Instead, it has 64 24-bit intermediate-address

B-registers and 64 64-bit intermediate-scalar T-registers. These registers are under program control

and can deliver one operand per 9.5-nanosecond clock cycle to the primary scalar registers. The user

must plan a program carefully to make effective use of die B and T registers in CRAY Fortran; vari­

ables assigned to B and T registers by the compiler are never stored in memory.

The Fujitsu VP-200 and Hitachi S-810/20 automatically buffer all scalar memory accesses and

instruction fetches through fast cache memories of 8192 words and 32768 words, respectively. The

Fujitsu and Hitachi cache memories can each deliver two words per scalar clock cycle (15 nanoseconds

and 28 nanoseconds, respectively) to dieir respective scalar execution units, entirely under hardware

control.

15

3.4.4 Vector Memory Access

The computers studied all have multiple daia-strcaming pipelines to transfer operands between
main memory and vector registers, l-ach processor of a CRAY X-MP has three pipelines two dedi­
cated to loads and one dedicated to stores - between its own set of vector registers and die shared
main memory. (A fourdi pipe in each X-MP processor is dedicated to I/O data transfers.) The Fujitsu
VP-2(X) has two memory pipelines, each capable of bodi loads and stores. The Hitachi S-810/20 has
four memory pipelines — three dedicated to loads and one capable of bodi loads and stores.

Each CRAY X-MP pipe can transfer one 64-bit word between main storage and a vector register
each 9.5-nanosecond cycle, giving a single-processor memory bandwidth (excluding I/O) of 315 mil­
lion words per second and a four-processor memory bandwiddi of 1260 million words per second.
The Fujitsu and Hitachi pipes can each transfer two 64-bit words each memory cycle (7.5 nanoseconds
and 14 nanoseconds, respectively), giving total memory bandwiddis of 533 and 560 million words per
second, respectively.

For indirect-address operations (scaner/gatfier) and for constant strides different from one. the
Fujitsu computer devotes one of its memory pipelines to generating operand addresses; its maximum
memory-io-vector register bandwidth is 266 million words per second for scatter/gather and odd-
number constant strides, and 133 million words per second for even-number constant strides.

All three machines can automatically "chain" their load and store pipelines with their vector func­
tional pipelines. Thus, vector instructions need not wait for a vector load to complete, but can begin
execution as soon as the first vector element arrives from memory. And vector stores can begin as
soon as the first result is available in a vector register. In the limit, pipelines can be chained to create
a continuous flow of operands from memory, through the vector functional unit(s). and back to
memory with an unbroken stream of finished results. In diis "memory-to-memory" processing mode,
die vector registers serve as litde more than buffers between memory and the functional units. The
CRAY X-MP*s three memory pipes permit memory-to-memory operation with two input operand
streams and one result stream. With only two memory pipes, the Fujitsu VP-200 can function in
memory-to-memory mode only if one of the input operands is already in a vector register, or if one of
the operands is a scalar, and not at all if the vector stride is different from one. The Hitachi, with four
memory pipes, can function in memory-to-memory mode with up to three input operand streams and
one result stream; add to this the Hiuchi's ability to automatically process vectors that are longer than
its vector registers, and die Hitachi can be viewed as a formidable memory-to-memory processor.

16

3.5 Input/Output Performance

Table 3 summarizes the input/output features and performance of the CRAY X-MP, the Fujitsu,

and the Hitachi. This information is entirely from the manufacturers' published machine specifications;

no I/O performance comparisons were included in our tests.

Bodi die CRAY and Hitachi I/O subsystems have optional integrated solid-state storage devices,

with data transfer rates of 2048 and 1024 Mbytes per second, respectively, over specialized channels.

The I/O bandwiddi of one of tiiese devices dwarfs the I/O bandwidth of the entire disk I/O subsystem

on each machine. The Fujitsu computers can attach only those solid-state storage devices diat emulate

standard IBM disk and drum devices over standard Fujitsu 3-Mbyte-per-second channels.

The IBM-compatible disk I/O subsystems on die two Japanese computers have a much larger

aggregate disk storage capacity than die CRAY. The CRAY can attach a maximum of 32 disk units,

while Fujitsu and Hitachi can each attach over one thousand disks. CRAY permits a maximum of 8

concurrent disk data transfers, while Fujitsu and Hitachi permit as many concurrent disk data transfers

as diere are channels (up to 31; at least one channel is required for front-end communication). Indivi­

dually, CRAY'S DD-49 disks can transfer data sequentially at the rate of 10 Mbytes per second, com­

pared with only 3 Mbytes per second for the IBM 3380-compatible disks used by Fujitsu and Hitachi.

But the maximum concurrent CRAY disk data rate (four DD-49 data streams on each of two I/O pro­

cessors) is only 68 Mbytes per second, compared with 93 Mbytes per second for the two Japanese

computers. The disks used on all three computers should have very similar random access perfor­

mance, which is dominated by access time rather than data transfer rate.

CRAY includes up to 8 Mwords of I/O subsystem buffer memory between its CPUs and its disk

units. This I/O buffer memory permits 100-Mbyte-per-second data transfer between the I/O subsystem

and a single CRAY CPU. The IBM 3880-compatible disk controllers used by the two Japanese

machines permit up to 2 Mwords of cache buffer memory on each controller. This disk controller

cache does not increase peak data transfer rates but serves to reduce average record access times.

17

Table 3

Input/Output Features and Performance

I/O Features

Disk I/O Channels:

Disk I/O Proccsson

Channels per lOP

Maximum Channels

Dau Rate Channel

ToUl Bandwidth

Disk Controllers:

Max. per Channel

Max. Controllers

Disks/Controller

Dau PathyConirollcr

Bandwidth/Controller

Disk Devices:

Storage Capacity

Dau Transfer Rate

Average Seek Time

Average Latency

Maximum Striping

Max. Disk Bandwidth

Integrated SSD:

Capacity (Mwords)

Dau Transfer Rale

CRAY X MP4

2 1 C) Subsystems

1

2

too MB/s

200 MB/s

DCU-5

4

8

4

1

12 MB/s

DD-39; DD^9

1200 MB; 1200 MB

6 MB/s; 10 MB/s

18 ms; 16 ms

11 ms; ''

5; 3

45 MB/s; 68 MB/s

Optional

32; 64; 128

256 Mwords/s

Fujitsu VP-200

2 I/O Directors

16

32

3 MB/s

96 MB/s

6880

8

128

4-64

2

6 MB/s

6380

600 MB; 1200 MB

3 MB/s

15 ms

8 ms

24

93 MB/s

Not Available

lliuchi S-810/20

2 I/O Directors

16

32

3 MB/s

96 MB/s

3880-equivalcnt

16

256

4-16

2

6 MB/s

3380-cquivalent

600 MB; 1200 MB

3 MB/s

15 ms

8 ms

7

93 MB/s

Optional

32; 64; 128

128 Mwords/s

18

All three machines permit "disk striping" to increase I/O performance — the data blocks of a sin­

gle file can be interleaved over multiple disk devices to allow concurrent data transfer for a single file.

CRAY allows certain disks to be designated as striping volumes at the system level; striped and non-

striped datasets may not reside on the same disk volume. A single CRAY file may be sn-iped over a

maximum of three DD-49 or five DD-39 disk units. Fujitsu and Hitachi permit striping on a dataset

basis; striped and non-striped datasets may reside on the same disk volume. A single Fujitsu dataset

may be striped over as many as 24 disk volumes.

3,6 Vector Processing Performance

Table 4 shows the vector architectures of die three computers studied. All three machines are

vector register based, with multiple pipelines connecting the vector registers with main memory. All

three have multiple vector functional units, permit concurrency among independent vector functional

units and with the load/store pipelines, and permit flexible chaining of the vector functional units with

each other and with die load/store pipelines. Although Fujitsu and Hitachi permit both 32-bit and 64-

bit vector operands, all vector arithmetic on all three machines is performed in and optimized for 64-bit

floating point. The diree vector units differ primarily in die numbers and lengths of vector registers,

the numbers of vector functional units, and the types of vector instructions.

Of the three machines, the CRAY has the smallest number and size of vector registers. Each

CRAY X-MP processing unit has 8 vector registers of 64 elements, while die Fujitsu and Hitachi com­

puters each have 8192-word vector register sets. The Fujitsu vector registers can be dynamically

configured into different numbers and lengths of vector registers (see Table 4), ranging from a

minimum of 8 registers of 1024 words each to a maximum of 256 registers of 32 words each. The

Fujitsu Fortran compiler uses the vector-length information available at compile time to try to optimize

the vector register configurations for each loop. The Hitachi has 32 vector registers, fixed at 256 ele­

ments each, but with the unique ability to process longer vectors without the user or the compiler

dividing them into sections of 256 elements or less; the Hitachi hardware can automatically repeat a

long vector instruction for successive vector segments. The HAP Fortran compiler decides when to

divide vectors into 256-element segments and when to process entire vectors all at once, based on

whether intermediate results in a vector register can be used in later operations.

19

Table 4

Vector Archilcciurc

Vector Processing lum CRAY X MP 4 Fujitsu VP-200 HiUchi S 8I(V20

Vector Rcgivicni

Confipunlion

ToUl Captcity

Number x Size

Misk Registers

Vector Pipcl incs

Load'Slore

Floating Point

Other

Maximum Vccinr Result Rales

(64-bit resulu):

Floaung Poini Mull.

Roaung Point Add

Floating Point Ehvide

Floating Mult Sc Add

Vector OaU Types:

Floating Point

Fixed Point

Logical

Veaor Macro Instructions:

Masked Anthmeuc

Vector Compress/Expand

Vector Merge under Mavk

Vector Sum (S-S+Vi)

Fixed

512 Words/CPU

8x64 Words

64 Biu

(per CPIO

2 Lxnd; 1 Store

1 Mull; 1 Add;

1 Recip. Approx.

1 Shift; 1 Mask

2 Laical

105 MFLOPS

105 MFLOPS

33 MFLOPS

210 MFLOPS

M b i t

64-bit

64-bit

No

Yes

Yc«

No

Reconfigunble

8192 Words

8x1024 Words

16x512 Words

32x256 Words

64x128 Words

l28xM Words

256x32 Words

8192 Biu

2 Load'Storc

1 Mult. 1 Add

1 Divide

1 Mask

267 MFLOPS

267 MFLOPS

56 MFLOPS

533 MFLOPS

32-bil. 64 bit

32-bit

1 bit; 64-bit

Yes

Yes

No

Yci

Fixed

8192 Words

32x256 Words

8x256 Words

3 l,oad;l L^oad/Store

2 Add/Shift/Logic

1 Mull/Dividc/Add

1 Mult/Add

1 Mask

280 MFLOPS

560 MFLOPS

70 MFLOPS

560 MFLOPS

840 (M+2A)

32-bit; 64-bil

32-bit

64-bil

Yes

Yes

No

Yes

20

Vector Processing Item

Vector Macro Instructions:

Vector Prod (S=S*Vi)

DOT Product (S=S+Vi*Vj)

DAXPY (Vi=Vi-t-S*Xi)

Iteration (Aj=Ai*Bi-t-Ci)

Max/Min (S=MAX(S,Vi))

Fix/Float (Vi=Ii;Ii=Vi)

CRAY X-MP-4

No

No

Chain

No

No

Chain

Fujitsu VP-200

No

Chain

Chain

No

Yes

Yes

Hitachi S-810/20

Yes

Yes

Yes

Yes

Yes

Yes

The Hitachi has more vector arithmetic pipelines dian the CRAY and Fujitsu computers. These

pipelines permit the Hitachi to achieve higher peak levels of concurrency than CRAY and Fujitsu.

Depending on the operation mix, the Hitachi can drive two vector add and two vector multiply+add

pipelines concurrendy, for an instantaneous result rate of 840 MFLOPS. If die program operation mix

is inappropriate, however, the extra pipelines are just expensive unused hardware. The HAP Fortran

"pair-processing" option often increases performance by dividing a vector in two and processing each

half concurrendy through a separate pipe. For long vectors, pair-processing can double the result rate;

but for short vectors, startup overhead can result in reduced performance. The HAP Fortran compiler

pemits pair-processing to be selected on a program-wide, subroutine-wide, or individual loop basis.

The Fujitsu and Hitachi computers have larger and more powerful vector instruction sets than the

CRAY. These macro instruction sets make these machines more "compilable" and more "vectorizable"

than the CRAY. Especially valuable are the macro instructions that reduce an entire vector operation

to a single result, such as the vector inner (or dot) product. The CRAY, lacking such instructions,

must normally perform these operations in scalar mode, although vectorizable algorithms exist for long

CRAY vectors. The Hitachi has the richest set of vector macro-instructions, with macro functional

units to match. Both Fujitsu and Hitachi have single vector instructions or chains to extract the max­

imum and minimum elements of a vector, to sum the elements of a vector, to take the inner product of

two vectors, and to convert vector elements between fixed point and floating point representations. To

these, the Hitachi adds a vector product reduction, the DAXPY sequence common in linear algebra,

and a vector iteration useful in finite-difference calculations.

The only CRAY masked vector instructions are the vector compress/expand and conditional vec­

tor merge instructions; the CRAY Fortran compiler uses these instructions to vectorize loops with only

a single IF statement. The CRAY can hold logical data for only a single vector register. Both

Japanese computers, on the odier hand, have masked arithmetic instructions that permit straightforward

vectorization of loops widi IF statements. The Fujitsu and Hitachi computers have mask register sets

diat can hold logical data for every vector register element. These large mask register sets, and vector

logical instructions to manipulate these masks, should make the Japanese machines strong candidates

for logic programming. These machines can hold die results of many different logical operations in

their multiple mask registers, eUminating the need to recompute masks diat are needed repeatedly, and

21

permitting the vectorization of loops with multiple, compound, and nested IF statements.

3.7 Scalar Processing Performance

Table S compares the scalar architectures of the three machines studied.

All three computers permit scalar and vector instruction concurrency; CRAY permits concurrency

among all its functional units. The Fujitsu and Hitachi computers are compatible with IBM System

370; they implement the complete IBM 370 scalar instruction set and scalar register sets (Fujitsu added

four additional floating-point registers).

CRAY computers use multiple, fully-segmented functional units for both scalar and vector

instruction execution, while Fujitsu and Hitachi use an unsegmented execution unit for all scalar

instructions. CRAY computers can begin a scalar instruction on any clock cycle; more than one

CRAY scalar instruction can be in execution at a given time, in the same and in different functional

units. Fujitsu and Hitachi, on the other hand, perform their scalar instructions one at a time, many tak­

ing more than one cycle. Thus, even though many scalar instruction times are faster on the Fujitsu

than on the CRAY, the CRAY will often have a higher scalar result rate because of concurrency. In

our benchmark set, a single processor of the CRAY X-MP-4 outperformed both the Fujitsu VP-200

and the Hitachi S-810/20 on all the programs that were dominated by scalar floating point instruction

execution.

The Fujitsu and Hitachi computers have larger and more powerful general-pur(>ose instruction

sets than the CRAY, and more flexible dau formats for integer and character processing. Thus, appli­

cations that are predominately scalar and use litde floating-point arithmetic may well execute faster on

these IBM-compatible computers than on a CRAY. We had no applications in our benchmark to

measure such performance.

Scalar Processing Item

22

Table 5

Scalar Architecture

CRAY X-MP-4 Fujitsu VP-200 Hitachi S-810/20

Scalar Cycle Time

Scalar Registers:

General/Addressing

Floating Point

Scalar Buffer Memory:

Capacity

Memory Bandwidth

CPU Access Time

CPU Transfer Rate

Scalar Execution Times:

Floating Point Mult.

Floating Point Add

Scalar Data Types:

Floating Point

Fixed Point

Logical

Decimal

Character

9.5 nsec

8x24-bit

8x64-bit

T-Registers

64 Words

105 Mwords/sec

1 CP - 9.5 nsec

1 Word/9.5 nsec

7 CP - 66.5 nsec

6 CP - 57.0 nsec

64-bit

24; 64-bit

64-bit

None

None

15 nsec

16x32-bit

8x64-bit

Cache Memory

8192 Words

266 Mwords/sec

1 CP - 15 nsec

2 Words/15 nsec

3 CP - 45 nsec

2 CP - 30 nsec

32; 64; 128-bil

16; 32-bit

8; 32; 64-bit

1 to 16-bytes

1 to 4096-bytes

28 nsec

16x32-bil

4x64-bit

Cache Memory

32768 Words

112 Mwords/sec

1 CP - 28 nsec

2 Words/28 nsec

3 CP - 84 nsec

2 CP - 56 nsec

32; 64; 128-bit

16; 32-bit

8; 32; 64-bit

1 to 16-bytes

1 to 4096-bytes

4. Benchmark Environments

We spent two days at Cray Research compiling and running the benchmark on the CRAY X-

MP-4. The CRAY programs were one-processor tests; no attempt was made to exploit the additional

processors.

For the Japanese benchmarkings, we sent ahead a preliminary tape of our benchmark source pro­

grams and some load modules produced at Argonne. At both Fujitsu and Hitachi the load modules ran

without problem, demonstrating that the machines are in fact compatible with IBM computers on both

instruction set and operating system interface levels. (Of course, these tests did not use die vector

features of the machines.)

23

The VP-200 tests were run at the Fujitsu plant in Numazu, Japan, during a one-week period. We

had as much lime on the VP-200 as needed. The front-end machine was a Fujitsu M-380 (approxi­

mately twice as fast as a single processor of an IBM 3081 K).

The Hitachi S-810/20 tests were run at the Hitachi Kanagawa Works, during two afternoons.

The Hitachi S-810/20 benchmark configuration had no front-end system. Instead, we compiled, linked,

ran, and printed output directly on the machine.

The physical environment of the Hitachi S-810/20 at Kanagawa is noteworthy. The machine

room was not air-conditioned; a window was opened to cool off die area. The outside temperature

exceeded 1(X) degrees Fahrenheit on the first day, and we estimate that the computer room temperature

was well above 100 degrees, with high humidity; yet the computer ran without problem.

5. Benchmark Codes and Results

5.1 Codes

We asked some of the major computer users at Argonne for typical Fortran programs diat would

help in judging the performance of these vector machines. We gathered 20 programs, some simple

kernels, others fiill production codes. The programs are itemized in Table 6.

Four of the programs have very litde vectorizable Fortran (for the most part they are scalar pro­
grams): BANDED, NODALO, NODALl, SPARSESP. Bodi STRAWEXP and STRAWIMP have
many calculations involving short vectors. For most of these programs the CRAY X-MP performed
fastest, with the Fujitsu faster than the Hitachi.

Below we describe some of the benchmarks and analyze the results.

5.1.1 APW

The APW program is a solid-state quantum mechanics electronic structure code. APW calculates

self-consistent field wave functions and energy band structures for a sodium chloride lattice using an

antisymmetrized plane wave basis set and a muffin-tin potential. The majority of loops in this program

are short and are coded as IF loops rather than DO loops; they do not vectorize on any of die ben­

chmarked computers. The calculations are predominately scalar.

24

This program highlights die CRAY X-MP advantage when executing "quasi-vector" code

(vector-like loops that do not vectorize for some reason). The CRAY executes scalar code on seg­

mented functional units and can achieve a higher degree of concurrency in scalar tiian either the Fujitsu

or Hitachi machines, which execute scalar instructions one at a time.

5.1.2 BIGMAIN

BIGMAIN is a highly vectorized Monte Cario algorithm for computing Wilson line observables

in SU(2) lattice gauge tiieory. This program has die longest vector lengths of the benchmarks. All the

vectors begin on the same memory bank boundary, and all have a stride of twelve. The only

significant nonvectorized code is an IF loop, which seriously limits die peak performance.

The superior performance of the CRAY on BIGMAIN reflects both the CRAY'S insensitivity to

the vector stride and its greater levels of concurrency when executing scalar loops. The Fujitsu perfor­

mance reflects a quartering of memory bandwidth when using a vector stride of twelve. The Hitachi

performance reflects its slower scalar performance.

5.1.3 BFAUCET and FFAUCET

BFAUCET and FFAUCET compute the ground state energies of drops of liquid helium by the

variational Monte Carlo method. The BFAUCET codes involve Bose statistics, and a table-lookup

operation is an important component of the time. The FFAUCET cases use Fermi statistics and are

dominated by the evaluation of determinants using LU decomposition. The different cases correspond

to different sized drops, as shown in Table 7.

BFAUCETl, 2, and 3 and FFAUCETl and 2 perform only a single Monte Carlo iteration each;

these cases are typical of checkout runs and are dominated by non-repeated setup work. BFAUCET4,

5, and 6 and FFAUCET3 are long production runs.

5.1.4 LINPACK

The LINPACK timing is dominated by memory reference as a result of array access dirough the

calls to SAXPY. For this problem die vector length changes during the calculation from length 100

down to length 1 (see Table 8).

Fujitsu's and Hitachi's performance reflects the fact that diey do not do so well as die CRAY
with short vectors.

25

Table 6

Programs Used for Benchmarking

Cod« Na of Unei Ocscnplion

APW 1448 Solidsuie code, for anti symmdric plane wive calculations for solids.

DANDU) 1S39 Band linear algebra equation solver, for parallel proceuors

BIGMAIN 774 Vecton»d Monte Carlo algonthm. for SU(2) lattice gauge theory.

DIF3D 527 1,2. and 3-D difTusion theory kernels.

LATFERM3 1149 Statistical-mechanical approach to lattice gauge calculations.

LATFERM4 1149 Statistical-mechanical approach to lattice gauge calculations.

LATTICED 1149 Sutistical-mechanical approach to lallice gauge calculations.

MGLXCDYN 1020 Molecular dynamics code simulating a fluid.

NODALO 34$ Kernel of 3-D neutronici code using nodal method.

NODALl 345 Kernel of 3-D neuironics code using nodal method.

NODALX 345 Kernel of 3-D ncutronics code using nodal method.

BFAUCET 5460 Variational Monte Carlo for dropc of He-4 atoms — Bose statistics.

FFAIXTET 5577 Variational Monle Carlo for drops of ne-3 atoms — Fermi sUlistics.

SPARSESP 1617 ICCG for non-flymmelric sparw matrices based on normal equations.

SPARSE 1 3228 MA32 from the Harwell library sparse matrix code using fronul

techniques and software run on a 64 x 64 problem.

STRAWEXP 4806 2-D nonlinear explicit solution of finite element program with weakly

coupled thennomechanical formutilion in addition to structural and

fluid structural interaction capability.

STRAWIMP 4806 Same as STRAWEXP but implicit solution.

26

Table 7

Average Vector Length for BFAUCET and FFAUCET

Case Average Vector Length

BFAUCETl

BFAUCET2

BFAUCET3

BFAUCET4

BFAUCET5

BFAUCET6

FFAUCETl

FFAUCET2

FFAUCET3

10

35

56

120

10

35

10

17

10

Table 8

LINPACK Timing for a Matrix of Order 100

Machine MFLOPS Seconds

CRAY X-MP 21

Fujitsu VP-200 17

Hitachi S-810/20 17

.032

.040

,042

5.1.5 LU, Cholesky Decomposition, and Matrix Multiply

The LU, Cholesky decomposition, and matrix multiply benchmarks are based on matrix vector

operations. As a result, memory reference is not a limiting factor since results are retained in vector

registers during the operation. The technique used in these tests is based on vector unrolling [1],

which works equally well on CRAY, Fujitsu, and Hitachi machines.

27

The routines used in Tables 9 through 11 have a very high percentage of tloating-p^iint arithmetic

operations. The algorithms are all based on column accesses to the matrices. That is, the programs

reference array elements sequentially down a column, not across a row. With the exception of matrix

multiply, die vector lengths si.irt out as die order of the matrix and decrease during the course of the

computation to a vector length of one.

Table 9

LU Decomposition Based on Matrix Vector Operations

Order

50

100

150

200

250

300

CRAY X-MP(1 CPU)

24.5

51.6

72.1

87.4

99.2

108.4

Fuji itsu VP-200

20.5

51.8

84.6

117.1

148.8

178.8

Hitachi S-810/20

17.9

47.5

76.3

102.2

126.4

147.8

Table 10
Cholesky Decomposition Based on Matrix Vector O(>erations

Order

50

100

150

200

250

300

CRAY X-MP(1 CPU)

29.9

65.6

91.9

107.7

119.1

132.3

MFLOPS

Fuji itsu VP-200

25.8

70.6

117.6

162.2

202.2

238.1

Hitachi S-810/20

18.8

60.1

104.9

144.9

179.7

211.8

28

Table 11

Matrix Multiply Based on Matrix Vector Operations

Order

50

100

150

200

250

300

CRAY X-MP (1 CPU)

98.4

135.7

149.0

156.2

165.9

167.9

MFLOPS

Fuj itsu VP-200

112.9

225.2

328.1

404.5

462.2

469.2

Hitachi S-810/20

100.0

213.3

279.3

336.8

366.7

390.4

For low-order problems the CRAY X-MP is slighdy faster tiian the VP-200 and S-810/20,

because it has the smallest vector startup overhead (primarily due to faster memory access). As the

order increases, and die calculations become saturated by longer vectors, the Fujitsu VP-200 attains the

fastest overall execution rate.

With matrix multiply, the vectors remain die same length throughout; here Fujitsu comes close to

attaining its peak theoretical speed in Fortran.

5.2 Results

Table 12 contains the timing data for our benchmark codes. We also include the timing results

on other machines for comparison.

6. Fortran Compilers and Tools

6.1 Fortran Compilers

The three compilers tested exhibit several similarities. All three tested systems include a full For­

tran 77 vectorizing compiler as the primary programming language. The CRAY compiler includes

most IBM and CDC Fortran extensions; the two Japanese compilers include all the IBM extensions to

Fortran 77. All three compilers can generate vectorized code from standard Fortran; no expHcit vector

syntax is provided. All three compilers recognize a variety of compiler directives — special Fortran

comments that, when placed in a Fortran source code, aid the compiler in optimizing and vectorizing

the generated code. Each compiler, in its options and compiler directives, provides users with a great

deal of control over the optimization and vectorization of their programs.

29

Table 12

Timing Data (in .seconds) for Various Computers (a)

Program

NanK

APW

BANDED

BIGMAIN

D I R D S l / l

DinDS2/ l

DIF3DV(V|

DIF5DVI 1

LATTERM3

LJVTFERM4

UVTTlCEg

MOI^CDYN

NODAU)

NODALl

NODEUC

BFAtXrETl

B F A l X X n

B F A l X m

BFAUCET4

BFAIXXTS

BFAIK:ET6

FFAlXrETI

FFAtX:ET2

F F A U C m

SPARSESP

SPARSE!

STRAWEXP

STREWEXP2

STRAWIMP

CRAY X M P ^

using 1 prvK.

e r r 1 13

30.69

24J

10.86

23.7

19.0

9J1

9J7

6.1

121.8

102

8.68

6.41

6.45

.25

11J

8.96

10.6

259.4

787.4

727J

13.6

44.4

1144.0

1200

Z J l

37J

153.4

1513

Fujitsu

Vp-200

ni

4038

34.15

: i 4 9

20 J1

2193

16 37

1639

6.2

65 J9

534

9.07

14.31

14 47

.14

16.13

11.66

18 48

551.2

923.04

823.98

19.45

4231

1691.83

1361

6.74

45.74

179.37

15131

lliuchi

S810/20

f77

54 37

38 1

34 36

21.9

21.9

11.8

111

6.6

653

6.7

1578

20.1

198

.20

1264.29

9.85

59.2

231.13

172.61

lliuchi(b)

S810^0

PORTVS

(scalar)

41 0

451

47.4

50.1

49.3

158

345 2

16

16 6

193

19.3

22.9

23.9

38.7

14.26

MiU(.hi{b)

S810r20

II EXT

(scalar)

157.66

39.2

413

393

38.7

333

820.6

194

172

197

19 5

1.14

22.8

24.2

389

621.0

1529.4

26.7

114 3

273.9

7

IBM

370 1*>5

11 EXT

74 82

81 27

73

74

36.26

28.36

2738

1.45

116.28

382.73

m M

3033

FORrvs

171

102 65

151.81

157 44

168

167

52 07

46 38

5144

4533

4535

157

74

79

130

2100

94

419

33.06

143.35

38131

IBM

3033

I I EXT

1342

142.

138

137

87.8

538

51.74

453

45.

73

78

128

2048

82

397

142.28

360.55

Amdahl

5860

r 7

62

35

62

67

73

70

18

640

17

17

27

23

31

34

405

920

2351

2786

35

150

2440

1484

26

51

216

(a) Numbers in boldface denote "fastest" time for a given program.

(b) From load modules created on an IBM machine.

30

The compilers differ primarily in the range of Fortran statements they can vectorize, the complex­

ity of the DO loops that they vectorize, and die quantity and quality of messages they provide the pro­

grammer about die success or failure of vectorization.

All tiiree Fortran compilers have similar capabilities for vectorizing simple inner DO loops and

DO loops with a single IF statement. The two Japanese compilers can also vectorize outer DO loops

and loops with compound, multiple, and nested IF statements. The Fujitsu compiler has multiple stra­

tegies for vectorizing DO loops containing IF statements, based on compiler directive estimates of the

IF statement true ratio. The Japanese compilers can vectorize loops tiiat contain a mix of vectorizable

and non-vectorizable statements; the CRAY compiler requires the user to divide such code into

separate vectorizable and non-vectorizable DO loops.

The vector macro instructions (e.g., inner product, MAX/MIN, iteration) on the two Japanese

computers permit their compilers to vectorize a wider range of Fortran statements than can the CRAY

compiler. And, the Japanese compilers seem more successful at using information from outside a DO

loop in determining whether that loop is vectorizable.

All diree compilers, in their output listings, indicate which DO loops vectorized and which did

not. The two Japanese compilers provide more detailed explanations of why a particular DO loop or

statement does not vectorize. The Fujitsu compiler listing is the most effective of the three: in addition

to the vectorization commentary, the Fujitsu compiler labels each DO statement in the source listing

with a V if it vectorizes totally, an S if the loop compiles to scalar code, and an M if the loop is a mix

of scalar and vector code. Each statement in the loop itself is similarly labeled.

The Fujitsu and Hitachi compilers make all architectural features of their respective machines

available from standard Fortran. As a measure of confidence in their compilers, Fujitsu has written all,

and Hitachi nearly all, of their scientific subroutine libraries in standard Fortran.

6,2 Fortran Tools

Fujitsu and Hitachi provide Fortran source program analysis tools which aid the user in optimiz­

ing program performance. The Fujitsu interactive vectorizer is a powerful tool for both the novice and

tiie experienced user; it allows one to tune a program despite an unfamiliarity witii vector machine

architecture and programming practices. The interactive vectorizer (which runs on any IBM-

compatible system with MVS/TSO) displays the Fortran source widi each statement labeled with a V

(vectorized), S (scalar), or M (partially vectorized), and a static estimate of die execution cost of die

statement As the user interactively modifies a code, die vectorization labels and statement execution

costs are updated on-screen. The vectorizer gives detailed explanations for failure to vectorize a state­

ment, suggests alternative codings that will vectorize, and inserts compiler directives into die source

based on user responses to die vectorizer's queries. Statement execution cost analyses are based on

assumed DO loop iteration counts and IF statement true ratios. The user can run the FORTUNE exe­

cution analyzer to gather run-time statistics for a program, which can then be input to the interactive

vectorizer to provide a more accurate dynamic statement execution cost analysis.

31

The Hitachi VECTIZER runs in batch mode; it provides additional information much like die

Hitachi Fortran compiler's vectorization messages.

7. Conclusions

The results of our benchmark show die CRAY X-MP-4 to be a coasisicntly strong performer

across a wide range of problems. The CRAY was particularly fast on programs dominated by scalar

calculations and short vectors. The fast CRAY memory contributes to low vector startup times, lead­

ing to its exceptional short-vector performance. The CRAY scalar performance derives from its seg­

mented functional units; the X-MP achieves enough concurrency in many scalar loops to outperform

the Japanese machines, even though individual scalar arithmetic instruction times are about twice as

long on the CRAY as on the Fujitsu.

The Fujitsu and Hitachi computers perform faster than die CRAY for highly vectorizable pro­

grams, especially those widi long (>50) vector lengths. The Fujitsu VP achieved the most dramatic

peak performance in the benchmark, outperforming a single CRAY X-MP processor by factors of two

to three on matrix-vector algorithms, with die Hitachi not far behind. Over the life cycle of a program,

the Fujitsu and Hitachi machines should benefit relatively more than the CRAY from tuning that

increases the degree of program vectorizadon.

The CRAY has I/O weaknesses that were not probed in this exercise. With an SSD, the CRAY

has the highest I/O bandwidth of the three machines. However, owing to severe limits on the number

of disk I/O paths and disk devices, the total CRAY disk storage capacity and aggregate disk I/O

bandwidth fall far below that of the two Japanese machines. The CRAY is forced to depend on a

front-end machine's mass storage system to manage the large quantities of disk data created and con­

sumed by such a high-performance machine.

Several weaknesses were evident in the Fujitsu VP in this benchmark. The Fujitsu memory per­

formance degrades seriously for nonconsecutive vectors. This was particularly evident in the BIG-

MAIN, DIF3D, and FAUCET benchmark programs. Even-number vector strides reduce the Fujitsu

memory bandwidth by 75%, and a stride proportional to the number of memory banks (stride-n*128)

reduces the memory bandwidth about 94%. This results in poor performance for vectorized Fortran

COMPLEX aridimetic (stride-2). Fujitsu users will profit by reprogramming their complex aridimetic

using only REAL arrays, and by ensuring that multidimensional-array algorithms are vectorized by

column (stride-1) rather than by row.

Fujitsu's vector performance is substantially improved if a program's maximum vector lengths

are evident at compile time, whedier from explicit DO loop bounds, array dimension statements, or

compiler directives. For example, die order-100 LINPACK benchmark improves by 12% to 19

MFLOPS, and die order-300 matrix-vector LU benchmark improves by 23% to 220 MFLOPS, when a

Fujitsu compiler directive is included to specify die maximum vector length (numbers from die LIN­

PACK benchmark paper [2J). When maximum vector lengdis are known, the Fujitsu compiler can

optimize die numbers and lengdis of die vector registers and frequentiy avoid the logic diat divides

vectors into segments no larger than the vector registers. Fujitsu's short-loop performance, not strong

32

to begin with, is particularly degraded by unnecessary vector segmentation ("stripmining") logic. None

of \he benchmark problems had explicit vector lengtii information.

In many ways, the Hitachi computer seems to have the greatest vector potential. Despite its

slower memory technology, the Hitachi has the highest single processor memory bandwidth, owing to

its four memory pipes. Also, Hitachi has the most powerful vector macro instruction set and the most

flexible set of arithmetic pipelines; in addition, the Hitachi is die ordy computer able to process vectors

longer than its vector registers, entirely in hardware. The vectorizing Fortran compiler is impressive,

although the compiler is rarely able to exploit fully the potential concurrency of the arithmetic pipe­

lines. The Hitachi performs best on the benchmarks witii litde scalar content; its slow scalar perfor­

mance — about half that of the Fujitsu computer — burdens its performance on every problem.

At present die Japanese Fortran compilers are superior to the CRAY compiler at vectorization.

Advanced Fujitsu and Hitachi hardware features provide opportunities for vectorization that are una­

vailable on the CRAY. For example, the Japanese machines have macro instructions to vectorize dot

products, simple recurrences, and the search for the maximum and minimum elements of an array; and

they have multiple mask registers to allow vectorization of loops with nested IF statements. Thus, a

wider range of algorithms can vectorize on the Japanese computers than can vectorize on the CRAY.

Also, the Japanese compilers provide the user with more useful information about the success and

failure of vectorization. Moreover, there is no CRAY equivalent to the Fujitsu interactive vectorizer

and FORTUNE performance analyzer. These advanced hardware features and vectorizing tools will

make it easier to tune programs for optimum performance on the Japanese computers than on the

CRAY.

The CRAY X-MP and the Japanese computers require different tuning strategies. The CRAY

compiler does not partially vectorize loops. Therefore, CRAY users typically break up loops into tiieir

vectorizable and nonvectorizable parts. The Japanese compilers, however, automatically segment loops

into their vectorizable and nonvectorizable parts.

References

[1] J.J. Dongarra and S,C. Eisenstat, "Squeezing die Most out of an Algorithm in CRAY Fortran,"

ACM Trans. Math. Software, Vol. 10, No. 3, pp. 221-230 (1984).

[2] J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations Software in

a Fortran Environment, Argonne National Laboratory Report MCS-TM-23 (October 1985)

Acknowledgment

We would like to thank Gail Pieper for her excellent help in editing diis report.

33

Appendix A: VECTOR Program

Below is the program VECTOR, used to check out the compiler's ability to vectorize i-onran
code.

VECTOR is not a particularly difficult benchmark for vectorizing compilers, but there are a
number of tricky loops and the program that will identify poor vector compilers. Each loop is
designed to test the ability of the compiler to detect a single opportunity for vectorization. By no
means is it intended to be an exhaustive test.

C PROGRAM VECTdNPirr.OUTPirr)
INTEGER tjOOP. PRTINC

C

REAL START. MAXNLM, MINFRC
C

IKTECER NOl. N02, N03. N04, N05. N06. N07, N08. N09. NIO,
Nil. NI2, NI3. N14. N15. N16, N17

C

LOGICAL ADD. SUB, MLn.T. DIV
C

INTEGER SIZEOl. SIZE02. SIZE03. S1ZE04. SIZE05.
SIZE06, SIZE07, SIZE08. SIZE09. SIZEIO,
SIZEll. SIZE12. S1ZE13, S1ZE14. SIZEI5.
SIZE16. SIZE17. SIZE99

C

INTEGER SZ16SQ. SZ17SQ
C

C ALL PARi^ETER STATEMENTS FOLLOW
C
C
C
C THE FOLLOWING PAR>^1ETER. LOOP. CONTROLS THE NIKBER OF TIMES
C THE MAJOR LOOP IS EXECUTED. ONE EXECimON OF THE MAJOR LOOP
C CAUSES ALL OF THE 17 MINOR LOOPS TO BE EXEOTTED ONCE
C

PARAKCTER (LOOP - 1 0 0 0 0)
C
C THE FOLLCWNO PARAMETER. PRTINC, CONTROLS THE AMDUNT OF OUTPUT

C

C

C

PARANETER (PRTINC - 10)

PARAKETER (START - I .01 . MAXNI>1 - I E50. MINFRC - I ./MAXNIM)

PARAMETER (ADD - . TRUE . SUB - FALSE .
MULT - TRUE.. DIV . .FALSE.)

C
c
C THE FOLLCWNG SIZE PARAMETERS MAY BE FREELY CHANGED BY THE USER
C IT MAY BE DESIRABLE TO HAVE A MIXTURE OF LARGE AND SMALL ARRAYS
C
C ALL MATRICES ARE SQUARE AND THE SIZE PARAMETER IS THE NLMBER OF
C ROWS (OR COLLKMS) IN THE MATRIX. NOT THE TOTAL Nli^ER OF ELEMENTS

34

THE CCMPLTTATION SIZE*SIZE TO DETERMINE THE NLMBER OF ELEMENTS
MATRICES ARE USED IN LOOPS 16 (SIZE16) AND 17 (SIZE17).

PARAMETER
SIZEOl ••
SIZE03
SIZE05
SIZE07
SIZE09
SIZEl1
SIZE13
SIZE15
SIZE17

100
100

1000
1000
1000
1000
1000
1000
100

SIZE02
SIZE04
SIZE06
SIZE08
SIZEIO
SIZE12
SIZE14
SIZE16

1000
6000
1000
1000
1000
4000
1000
100.

PARAMETER (
SZ16SQ = SIZE16*SIZE16 SZ17SQ = S1ZE17*SIZE17)

THE SIZE OF THE '99' ARRAYS IS DEFINED TO BE THE LARGEST SIZE
OF ALL THE SINGLE DIMENSION ARRAYS.

PARAMETER (SIZE99 = SIZE04)

THE LOOP MAXIMUMS ARE DEFINED TO BE THE SIZE OF THE ARRAY
'$

THAT ARE USED IN THE LOOP.

PARAMETER (
NOl
NO 3
NO 5
NOT
NO 9
Nil
N13
N15
N17

SIZEOl
SIZE03
SIZE05
SIZE07
SIZE09
SIZEll
SIZE13
SIZE15
SIZE17

NO 2
NO 4
NO 6
NO 8
NIO
N12
N14
N16

SIZE02
SIZE04
SIZE06
SIZE08
SIZEIO
SIZE12
SIZE14
SIZE16

THE REAL ARRAY DECLARATION STATEMENTS FOLLOW

REAL VOIA(SIZEOI)
V03A(SIZE03)
V07A(SIZE07)
VIOA(SIZEIO)
V12C(SIZE12)
V15A(SIZE15)

REAL V99A(SIZE99)
REAL M16A(SIZE16,SIZE16)

M17A(SIZE17,SIZE17)

VOIB(SIZEOI), V02A(SIZE02)
V04A(SIZE04), V05A(SIZE05)
V08A(SIZE08), V08B(SIZE08)
VI1A(SIZE11), V12A(SIZE12)
V13A(SIZE13), V13B(SIZE13)

V99B(SIZE99), V99C(SIZE99)
M16B(SIZE16,SIZE16)

V02B(SIZE02)
V06A(SIZE06)
V09A(SIZE09)
V12B(SIZE12)
V14A(SIZE14)

EACH INTEGER ARRAY IS USED AS AN INDEX INTO A REAL ARRAY.
ARRAY I<NAME> IS USED AS AN INDEX INTO ARRAY V<NAME> .
THEREFORE. THE SIZE OF ARRAY I<NAME> IS MADE THE SAME
AS ARRAY V<NAME>.

INTEGER I15A(SIZE15), I99A(SIZE99), I99B(SIZE99), I99C(SIZE9 9)

35

ALL SCALAR VARIABLES ARE DECLARED

REAL S. T. X
INTEGER I. J. K, M. INDEX

LOGICAL OPOl. OP02. OP03. OP08, 0P12, OP13. OPI6. OP17

c

c
c
c
c

c
c
c
c

INITIALIZE

DATA
VOIA
V02A
V03A
V05A
V07A
V08B
VIOA
V12A
V12C
V13B
V15A
V99A
V99C
M16A
M17A

: ALL VARIABLES

/SIZEOl *
/SIZEO: *
/SIZE03 *
/S1ZE05 '
/SIZE07 '

/SIZE08 <
/SIZEIO '
/SIZEI2 •
/SIZE12 "
/S1ZE13 •
/SIZE15 '
/SIZE99 '
/SIZE99 •
/SZ16SQ <
/SZI7SQ *

* START/,
' START/,
* START/.
* START/,
• START/.
* START/,
' START/,
* START/,
* START/.
* START/,
' START/,
* START/.
' START/.
' START/,
* START/

VOIB
V02B
V04A
V06A
V08A
V09A
VllA
VI2B
VI3A
VI4A

V99B

MI6B

/SIZEOl
/SIZE02
/SIZE04
/SIZE06
/S1ZE08
/SIZE09
/SIZEll
/SIZEI2
/SIZE13
/SIZE14

/SIZE99

/SZ16SQ

• START/.
• START/.
• START/.
• START/.
• START/.
• START/.
• START/.
• START/,
• START/.
• START/,

• START/.

• START/.

INITIALIZE THE STARTING M3DE OF THE OPERATORS FOR THOSE LO
THAT ALTERNATE BETWEEN ADD/SiraTRACT OR MULT I PLY/DIV IDE

OPOl .
OP02 -
OP03 -
OP08 -
OP12 .
OP13 -
OP16 -
OP17 .

INITIALIZE
WIT rniN THE

ADD
ADD
MULT
ADD
ADD
MULT
ADD
MULT

: THE INTE
. PROPER F

•GER ARRAYS TO
lANCE.

'RANDCM' VALUES THAT ARE

DO 1 I-l,SIZEI5
I15A(I) - I

CONTINUE
DO 2 I-l.SIZE99

I99A(I) - SIZE99.Ut
CONTINUE
DO 3 I-l,SIZE99

I99B(1) - I
CONTINUE
DO 4 I-1.SIZE99

I99C(I) . MAX(199A(I),I99B(I))
CONTINUE

BEGIN THE EXECUTION OF THE LOOPS

DO 1000 INDEX-1.LOOP

STAT^iENTS IN WRONG ORDER

36

IF (ABS(V01A(2)) .GT.MAXNUM) OPOl = .NOT. OPOl
IF (OPOl.EQV.ADD) THEN
DO 10 1=2,NOl

VOIB(I) = VOlA(I-l)
VOIA(I) = V01A(I)+V99A(I)

10 CONTINUE
ELSE
DO 11 1=2,NOl

VOIB(I) = VOlA(I-l)
VOIA(I) = V01A(I)-V99A(I)

11 CONTINUE
ENDIF

C
C DEPENDENCY NEEDING TEMPORARY
C

IF (ABS(V02B(2)).GT.MAXNUM) OP02 = .NOT.OP02
IF (OP02.EQV.ADD) THEN
DO 20 1=1,N02-1

V02A(I) = V99A(I)
V02B(I) = V02B(I)+V02A(I+1)

20 CONTINUE
ELSE
DO 21 1=1,N02-1

V02A(I) = V99A(I)
V02B(I) = V02B(I)-V02A(I+1)

21 CONTINUE
ENDIF

C
C LOOP WITH UNNECESSARY SCALAR STORE
C

IF (ABS(V03A(2)) .GT.MAXNUM .OR.
ABS(V03A(2)).LT.MINFRC) OP03 = .NOT.OP03

IF (OP03.EQV.MULT) THEN
DO 30 1=1,NOB

X = V99A(I)
V03A(I) = V03A(I)*(X+V99B(I))

30 CONTINUE
ELSE
DO 31 1 = 1 ,N03

X = V99A(I)
V03A(I) = V03A(I)/(X+V99B(I))

31 CONTINUE
ENDIF

C
C LOOP WITH AMBIGUOUS SCALAR TEMPORARY
C

T = 0.
DO 40 1=1,N04

S = V99A(I)*V99B(I)
V04A(I) = S+T
T = S

40 CONTINUE
C
C LOOP WITH SUBSCRIPT THAT MAY SEEM AMBIGUOUS
C

DO 50 1=1,N05/2
V05A(I) = V05A(I+N05/2)

50 CONTINUE
C

37

C RECURSIVE LOOP THAT REALLY ISN'T
C

DO 60 I-1.N06-2.2
V 0 6 A (U I) • V06A(1)*4

60 CONTINUE
C

C LOOP WITH POSSIBLE ANUIGUITY BECAUSE OF SCALAR STORE
C

DO 70 I-l.N07-I
J - U l
V07A(I) - V07A(J)

70 CONTINUE
C
C LOOP THAT IS PARTIALLY RECURSIVE
C

IF (ABS(V08A(2)) GT MAXNLM) OP08 - .NOT.OP08
IF (OP08 EQV ADD) THEN

DO 80 I.2.N08
V08A(I)+(V99A(I)»V99B(I))
V08B(I - I)<«>V08A(I)-*>V99B(I)

NO 8
V08A(I)-(V99A(I)•V99B(I))
V08B(I - 1)4V08A(1)^V99B(I)

STORES

DO 90 I-l,N09
V09A(I) - V99A(I)+V99B(I)
V09A(I) - V99C(I)*V09A(I)

90 CONTINUE
C
C LOOP WITH INDEPENDENT CONDITIONAL
C

T - I .
DO 100 I-l.NIO

IF (V99C(I).GE.T) THEN
X - V99A(I)*V99B(I)43.1
Y - V99A(I)+V99B(I)»2.9
VIOA(I) - SQRT(X»*2»Y)

ENDIF
100 CONTINUE
C
C LOOP WITH NONOONTIGIXXJS ADDRESSING

C
DO I to I-l.Nil.2

VIIA(I) - V99B(I)+3.*V99C(I)
110 CONTINUE
C

C SIMPLE LOOP WITH DEPENDENT CONDITIONAL

C
IF (ABS(V12A(2)) OT MAXNIM) 0P12 - .N0T.0P12
IF (ABS(V12B(2)).OT MAXNLM) OP12 - .N0T.0PI2
IF (ABS(V12C(2)) GT.MAXNLM) OP12 - N0T.0P12
IF (OP I 2. EQV. ADD) THEN

DO 120 I-I.N12

80

81

C
C
C

V08A(I)
V08B(1)

CONTINUE
ELSE

DO 81 I.
V08A(I)
V08B(I)

CONTINUE
ENDIF

LOOP WITH UNNEC

m

m

-2
-
•

:E

38

V 1 2 A (I) = V 1 2 A (I) + V 9 9 B (I) + V 9 9 C (I)
IF (V 1 2 A (I) . L T . O .) V 1 2 B (I) = V I 2 B (I) + V 9 9 A (I) + V 9 9 B (I)
V 1 2 C (I) = V 1 2 C (I) + V 1 2 A (I) + V 9 9 A (I)

120 CONTINUE
ELSE

DO 121 1=1.N12
V12A(I) = V12A(I)-V99B(I)-V99C(I)
IF (V12A(I)-EQ.O.) V12B(I) = VI2B(I)-V99A(I)-V99B(I)
V12C(I) = V12C(I)-V12A(I)-V99A(I)

121 CONTINUE
ENDIF

C
C COMPLEX LOOP WITH DEPENDENT CONDITIONAL

C
IF (ABS (VI 3B(2)) .GT.MAXNUM .OR.

ABS(V13B(2)).LT.MINFRC) OP13 = .N0T.0P13
IF (OP 13.EQV.MULT) THEN

DO 130 1 = 1 ,N13
V13A(I) = V99A(I)+V99C(I)
IF (V13A(I).EQ.O.) THEN

V13B(I) = V13A(I)*V13B(I)
ELSE

V13A(I) = V99B(I)*V99C(I)
V13B(I) = 1.

ENDIF
130 Ca^INUE

ELSE
DO 131 1=1,N13

V13A(I) = V99A(I)-V99C(I)
IF (V13A(I).EQ.O.) THEN

V13B(I) = V13A(I)/V13B(I)
ELSE

V13A(I) = V99B(I)/100.
V13B(I) = 1.

ENDIF
131 COfTINUE

ENDIF
C
C LOOP WITH SINGULARITY HANDLING
C

DO 140 1=1,N14
IF (V99B(I)-GT.O.) V14A(I) = V99B(I)/V99C(I)

140 cosrriNUE
C
C LOOP WITH SIMPLE GATHER/SCATTER SUBSCRIPTING
C

DO 150 1=1,N15
V15A(I15A(I)) =

SQRT(V99A(I99A(I))*V9 9B(I99B(I))+V99C(I99C(I))**2+.5)
150 CCX^mNUE
C
C LOOP WITH MULTIPLE DIMENSION RECURSION
C

IF (ABS(M16A(2,2)) .GT.MAXNLM) OP 1 6 = .N0T.0P16
IF (OP 16.EQV.ADD) THEN

DO 160 1=1,N16
DO 160 1=2,N16
M16A(I,J) = M16A(I.J-1)+M16B(I,J)

160 CCNTINUE

39

161

C
C
C

ELSE
DO
DO

161
161

MI6A(I
CONTINUE

ENDIF

LOOP WITH

1.
J-
J)

MULTIPLE

1.N16
2.NI6
- MI6A(I .J

DIMENSION

•1) •MI6B(I

AMBIGUOUS

J)

SUBSCRIPTS

170

171

1000

M - 1
} - M
K - M^l

IF (ABS(M17A(2.2)).0T MAXNIM
ABS(MI7A(2.2)).LT MINFRC)

IF (OP 17. EQV MULT) THEN
DO 170 1-2.NI7
MI7A(1.J) . MI7A(I

OR
OPI7 . NOT.OPI7

1-2

CONTINUE
ELSE

DO 171
M17A(I.J)

CONTINUE
ENDIF
CONTINUE
IF (PRTINC NEO)
^MtITE(»,10001)

(VOIAd
(V02A(I
(V03A(I
(V05A(I
(V07A(1
(V08B(I
(VlOAd
(V12A(I
(VI2C(I
(V13B(I
(V15A(I

»RITE(».1000
((M16A(
((M16B(
((MI7A(

ENDIF

N17
M17A(I

THEN

I.K)*3 5

I.K)/3.5

I.SIZEOl.PRTINC)
I.SIZE02.PRTINC)
1.SIZE03,PRTINC)
I.S1ZE05.PRTINC)
1.SIZE07.PRTINC)
1.SIZE07.PRTINC)
I.SIZEIO.PRTINC)
1.SIZE12,PRTINC)
1.SIZE12.PRTINC)
1.SIZE13.PRTINC)
1.SIZE15.PRTINC)
)

.1-1,SIZEI6.PRTINC)
) .1-1.SIZE16,PRTINC)
),I-1.SIZE17.PRTINC)

(VOIB(I)
(V02B(I)

(V06A(I)
(V08A(I)
(V09A(I)
(VllA(I)
(V12B(I)
(VI3A(I)
(VI4A(I)

1.SIZEOl.
1.SIZE02,

1.SIZE06.
1.SIZE07,
I.SIZE09,
1.SIZEl1.
1,SIZE12.
1.SIZE13,
1.SIZE14.

PRTINC).
PRTINC).

PRTINC).
PRTINC),
PRTINC).
PRTINC).
PRTINC).
PRTINC),
PRTINC),

J.I.SIZEI6.PRTINC)
J-I.SIZE16.PRTINC)
J-I.SIZE 17.PRTINC)

C FORMATS STATEMENTS FOLLOV
C
10001 FORMAT(*1 VALUES OF SINGLE DIMENSION ARRAYS FOLLOW'./

10002 FORMATS I VALUES OF DOUBLE DIMENSION ARRAYS FOLLCW' . /

C
STOP
END

(10E12.5))
(10E12.5))

40

Appendix B: VECTOR Results

Summarized in Table B-1 are the results from the program VECTOR. As the table indicates, two

CRAY compilers were tested: CFT 1.13 and CFT 1.15.

Table B-1

Loops Missed by the Respective Compders

Loop Label CRAY CRAY Fujitsu Hitachi

CFT 1.13 CFT 1.15 77/VP vlOllO fort77/hap (v02-00)

1

2

3

4

10,11 X X

20,21

30,31

40 X X P P

50 X X

60

70 X

80, 81 X X P

90

100

110

120, 121

130, 131

140

150

160, 161

170,171 X

X - Loop not vectorized.

P - Loop partially vectorized.

Below we present die information provided by each compiler about the nonvectorized loops.

41

CRAY X-MP CFT 1.15

The following loops were not v«clorUcd by the CRAY compiler.

C
C STATEMENIS IN WRONG ORDER

C

IF (ABS(V0IA(2)) GT.MAXNLM) OPOl - NOT.OPOl

IF (OPOl EQV.ADD) THEN

DO 10 1-2.NOl

VOlB(l) - VOIAd- I)

VOIAd) • VOIAd) + V99A(l)

10 CONTINUE

ELSE

DO I I I.2.NOl

V0IB(I) . V0IA(I-1)

VOIAd) - V01A(I)-V99A(I)

11 CONTINUE
ENDIF

CompUtr message:
DtpemUncy invotvuig array VOiA.

Prtvtous mtnus wUh an uurementing subscript.

C

C LOOP WFTH AMBIGUOUS SCALAR TEMPORARY
C

T '0
DO 40 lmJJ^04

5 - V99A(l)*V99B(l)
V04A(I) ̂ S*T
T 'S

40 CONTINUE
Compiler message
No message given.

C
C LOOP THAT IS PARTIALLY RECURSIVE

C

IF (A B S (V 0 8 A (2)) GT MAXNIM) OP08 - .NOT.OP08
IF (OP08.EQV.ADD) THEN

DO 80 1 - 2 . N 0 8
V 0 8 A d) - V 0 8 A (I) + (V 9 9 A d) * V 9 9 B (I))
V O S B d) - V 0 8 B d - l) + V 0 8 A (I) + V 9 9 B (I)

80 CONTINUE
ELSE

DO 81 1 - 2 . N 0 8
V 0 8 A (I) - V 0 8 A d) - (V 9 9 A d) * V 9 9 B d))
V 0 8 B (1) - V 0 8 B d - l) + V 0 8 A (I) + V 9 9 B d)

81 CONTINUE
ENDIF

Compiler message

Dependency involving array V08B.
Previous mtnus with an incrementing subscript.

(Note thai partial vectorization takes place; there i& no hardware

to allow recursion as in the Hitachi S-810.

42

Fujitsu 77/VP vlOllO

The following loops were not vectorized by the Fujitsu compiler.

C
C LOOP WITH AMBIGUOUS SCALAR TEMPORARY

C
T = 0.
DO 40 1 = 1 ,N04

S = V99A(I)*V99B(I)
V04A(I) = S+T
T = S

40 CONTINUE
Compiler message:
No message given for partial vectorization.

C
C LOOP WITH SUBSCRIPT THAT MAY SEEM AMBIGUOUS
C

DO 50 1=1.N05/2
V05A(I) = V05A(I+N05/2)

50 CC»^INUE
Compiler message:
Array V05A cannot be vectorized because recursive reference may take place.

C

C LOOP THAT IS PARTIALLY RECURSIVE
C

IF (ABS(V08A(2)) .GT.MAXNUM) OP08 = .NOT.OP08
IF (OP08.EQV.ADD) THEN

DO 80 U 2 , N 0 8

V 0 8 A (I) = V 0 8 A (I) + (V 9 9 A (I) * V 9 9 B (I))
V 0 8 B (I) = V 0 8 B (I - l) + V 0 8 A (I) + V 9 9 B d)

80 CONTINUE
ELSE
DO 81 U2.N08

V08A(I) = V08A(I)-(V99A(I)*V99B(I))
V08B(I) = V08B(I-1)+V08A(I)+V99B(I)

81 CCWriNUE
ENDIF

Compiler message:

Some statements in this range cannot be vectorized since data dependency is
recursive.

(Note that partial vectorization takes place; there is no hardware
to allow recursion as in the Hitachi S-810.

C

C LOOP WITH MULTIPLE DIMENSION AMBIGUOUS SUBSCRIPTS
C

M = 1
J = M
K = M+1

IF (ABS(M17A(2,2)).GT.MAXNLM .OR.

ABS (M17A(2, 2)).LT.MINFRC) 0P17 = .N0T.0P17
IF (OP 17.EQV.MULT) THEN

DO 170 1=2,N17

M17A(I,J) = M17A(I-1,K)*3.5
170 CC^riNUE

43

ELSE
DO 171 1-2.N17

M 1 7 A d . J) - M I 7 A (| . I . K) / 3 . 5
171 CONTINUE

ENDIF
Compii^r message

Variable K M subscript expression may cause recursive reference of array Mil A
Variable J M subscript expressiom may cause recursive referttue of array M17A
Relaitom bHween variables K and J may cause recursive reference
Some siaiemenis m thu range cannot be vectortzed since the data dependency u recursive

HlUcfal rort77/bap (v02-00)

The followtng loops were not vectorized by the Hitachi compiler.

C
C LOOP WITH ANBIGIXX'S SCALAR TEMPORARY
C

T - 0 .
DO 40 I - l ,N04

S - V 9 9 A (I) » V 9 9 B (I)
V04Ad) - S*T
T - S

40 CONTINUE
Compder message
DO LOOP 40 is partmHy vectonsable
V04A(I) - 5*T. varuMe T used before d^niiion

C
C LOOP WITH SI;BSCRIPT THAT MAY SEEM AK©IGIXXJS
C

DO 50 1-1.NOS/2
V 0 5 A (I) - V 0 5 A (U N 0 5 / 2)

50 CONTINUE
Compiler message
Unknown list vector data dapendemcy in variable V05A.

Internal

44

Distribution for ANL-85-19

J. J. Dongarra (40)
A. Hinds (40)
K. L. Kliewer
A. B. Krisciunas
P. C. Messina
G. W. Pieper
D. M. Pool
T. M. Woods (2)

ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (167)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. L. Bona, U. Chicago
T. L. Brown, U. of Illinois, Urbana
S. Gerhart, MCC, Austin, Texas
G. Golub, Stanford University
W. C. Lynch, Xerox Corp., Palo Alto
J. A. Nohel, U. of Wisconsin, Madison
M. F. Wheeler, Rice U.

D. Austin, ER-DOE
J. Greenberg, ER-DOE
G. Michael, LLL

AflOONNC NATIONAI lABWEST

• i i i iP

